Logistic Regression Models for Aggregated Data
نویسندگان
چکیده
Logistic regression models are a popular and effective method to predict the probability of categorical response data. However, inference for these can become computationally prohibitive large datasets. Here we adapt ideas from symbolic data analysis summarize collection predictor variables into histogram form, perform on this summary dataset. We develop based composite likelihoods derive an efficient one-versus-rest approximate likelihood model histogram-based random variables, constructed low-dimensional marginal histograms obtained full histogram. demonstrate that procedure achieve comparable classification rates standard multinomial against state-of-the-art subsampling algorithms logistic regression, but at substantially lower computational cost. Performance is explored through simulated examples, analyses supersymmetry satellite crop Supplementary materials article available online.
منابع مشابه
Logistic Regression Models for Analysis of Multistage Survey Data
are extensively used in analyzing sample survey data to study the relationship between a binary response and a group of independent variables. Due to cost and efficiency considerations, stratified multistage samples are the norm. However, these samples, while efficient for estimation of the descriptive population quantities, pose challenges for model-based statistical inference. This sampling s...
متن کاملLogistic Regression Models for the Analysis of Correlated Data
Up to this point in the text we have considered the use of the logistic regression model in settings where we observe a single dichotomous response for a sample of statistically independent subjects. However, there are settings where the assumption of independence of responses may not hold for a variety of reasons. For example, consider a study of asthma in children in which subjects are interv...
متن کاملQuantile regression with aggregated data
Analyses using aggregated data may bias inference. In this work we show how to avoid or at least reduce this bias when estimating quantile regressions using aggregated information. This is possible by considering the unconditional quantile regression recently introduced by Firpo et al (2009) and using a specific strategy to aggregate the data.
متن کاملMultiple Logistic Regression and Model Fit Multiple Logistic Regression Just as in OLS regression, logistic models
Multiple Logistic Regression Just as in OLS regression, logistic models can include more than one predictor. The analysis options are similar to regression. One can choose to select variables, as with a stepwise procedure, or one can enter the predictors simultaneously, or they can be entered in blocks. Variations of the likelihood ratio test can be conducted in which the chi-square test (G) is...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2021
ISSN: ['1061-8600', '1537-2715']
DOI: https://doi.org/10.1080/10618600.2021.1895816